The resurgence of rational choice theory in sociology has given rise to a debate about its scope and limits. This paper approaches the debate in a constructive spirit. Taking Coleman's recent work as exemplary of rational choice theory in sociology, the discussion begins by noticing some elements common to this theory and to the framework employed by neofunctionalist critics of rational choice theory. First, the concept of control plays a central role in both theoretical models. Second, both theories attempt to generalize the general equilibrium theory of economics, thereby capturing the economic theory as a special case. The constructive work consists of showing how key concepts of one model relate to analogous key concepts in the other. The aim is to forge the beginning of the synthesis in which the strengths of each model are preserved in one that includes both.

The application and assessment of the rational choice perspective is a major concern in contemporary sociological theory. A fruitful debate between advocates and critics is in progress. In particular, neofunctionalists have been especially critical of rational choice theorists (Alexander 1991), whereas the latter often have embarked on their analyses with critiques of "normativist" forms of theory (Hechter 1987). In this essay I present a constructive contribution to this situation. The key idea is to show that the model level of one recent strong contribution to rational choice theory in sociology can be articulated closely to the model level of the original Parsonian formulation of action theory in sociology. In this sense, the discussion operates from premises that characterize a "spirit of unification" in sociological theory (Fararo 1989a).

Implementing this spirit in this theoretical context is a daunting task. Numerous neofunctionalists (e.g., Alexander 1987; Alexander and Colomy 1990; Lechner, 1990), as well as others who do not employ a functionalist framework (e.g., Etzioni 1988), are convinced that rational choice thinking in sociology involves a mistaken effort to return to utilitarianism as a foundation of social theory. Rather than fusing rational with nonrational elements in a general theory of action, they argue, these modern utilitarians propose a purely rational image of action and thereby relegate everything else to residual category. In addition, rather than fusing their individualism with a necessary element of collectivism in addressing the problem of order, modern utilitarians attempt the impossible feat of deriving society from individuals. This attempt implies a starting point in an atomistic aggregate of actors with only a random distribution of ends. In short, simply by applying...
the critique of utilitarianism made by Parsons (1937) more than 50 years ago, most neofunctionalists regard rational choice theory in sociology as a deeply mistaken regressive element in social theory.

For their part, rational choice theorists (see especially Lindenberg 1985; Wippler and Lindenberg 1987) criticize what they see as a fundamentally mistaken path taken by classic sociology from Durkheim to Parsons to today’s neofunctionalism: a path that substituted a highly complex image of action featuring a diffuse and ill-defined social theory agenda for a simple and useful theory of action and a clear social theory agenda. Coleman (1986) explicates his approach with applause for the major presuppositional basis of neofunctionalism, *The Structure of Social Action* (Parsons 1937). He expresses strong agreement with its idea of grounding social theory in a theory of purposive action. Coleman goes on to assert, however, that the functionalism which Parsons built on this sound foundation is an abandonment of action theory. In his recent book, Coleman (1990) makes no attempt to articulate the presuppositional or model levels of his theory to the heritage of Parsonian action theory.

Sociologists agree that this difference represents a battle between rival and irreconcilable theoretical frameworks. In this essay, I initiate a break with this consensus. The beginning of a unification of the two frameworks provides a stronger foundation for social theory than either can supply on its own, but this claim must be made with appropriate qualifications. Most important, I specify my objective to a single pair of theory formulations and treat them primarily at the model level. The theory formulation in the rational choice tradition is Coleman’s (1990); I place the emphasis on the model employed, namely a generalization of the general equilibrium framework of neoclassical economics. The theory formulation in the neofunctionalist or Parsonian action theory tradition is the AGIL framework that Parsons elaborated. I also draw on key ideas presupposed in this scheme, which Parsons developed in earlier works. The principal way in which I attempt to link Coleman’s model to Parsons’s involves a highly effective property of the latter—what Alexander (1982, 1987) calls “multidimensionality.” In particular, the proper characterization of a system of action entails a series of “dimensions of action space” such that concreteness is misplaced if only one of these dimensions is employed as if it were a description of the total state of action. At the same time, this situation does not prohibit analytical theories that treat limited aspects of a complex system.

ORDER PROBLEMS AND GENERAL EQUILIBRIUM

The concept of order has at least two definitions for scientific purposes. Both apply to the state of some system in the world. In the first definition, a system state exhibits order insofar as it is a patterned departure from what would be expected under randomness. In the second, a system state exhibits order insofar as it involves the occupancy of one of the possible “attractors” of the dynamics of the system. The two definitions may be employed together, as in thermodynamics, where random mixing of molecules (implying a uniformity of temperature at the macroscopic level) is an attractor state: a closed system tends toward macroscopic uniformity—the disappearance of distinctions—corresponding to the microscopic state of random mixing of molecules. For the purposes of this paper, which focuses on the model level, I will favor the dynamical conception of order. Ordinarily this will imply nonrandomness of patterns of action.

Hence I will define a state of an action system as exhibiting order if it is one of the possible attractors of that system. Technically, there exist at least three types of attractors of dynamic process: single states of the system that are stable; sets of states of the system that are revisited in a stable cycle of some sort; and bounded domains of states forming
so-called “strange attractors.” The third type is associated with “fractals” and self-similarity of forms. As such it is definitely within the realm of possible forms of social order, but to address it here would take me too far from my main objective. Thus, for most purposes, the reader can interpret my use of the term order to refer to the first two types of attractors: single stable equilibrium states or stable cycles of states of a system. From a formal point of view, this notion requires 1) a state space for the description of the changes over time in the state of a type of system in the world, 2) a parameter space for describing the conditions under which such state space phenomena occur, which empirically changes more slowly than the state changes, and 3) some generator of changes of state derived from transition rules such that the equilibrium states are derived outcomes of the model. I will refer to these formal aspects as defining together a “dynamical system.”

By a theoretical problem of order I mean a formulation of an analytical problem whose solution requires, in principle, the analog of the demonstration of a theorem about the parametric conditions that are necessary or sufficient for the existence of an attractor with respect to an appropriate dynamical system. Historically and at present, neoclassical economics has provided an example under the classical rubric of equilibrium analysis, provided that the equilibrium problem is embedded in a dynamic model. In investigating stability, for instance, the change in price for any commodity may be taken to be proportional to the excess demand for that commodity at the given time. Thus, neoclassical economists are dealing with solutions to a problem of economic order—what we might call economic market order. When a system of markets rather than one market is under analysis, the corresponding body of theory usually is termed general equilibrium theory in economics. By contrast, the theoretical analysis of the order problem for a single market, whose environment consists of other markets affecting it, is called partial equilibrium analysis. Such a theoretical analysis treats “market order,” but only for the abstracted single market. This type of analysis was favored by Marshall, whereas the general equilibrium problem was formulated by Walras. Although many different types of markets can be studied within this framework, the actual multiplicity of interdependent market processes is not part of the theoretical problem in partial equilibrium analysis.

Because Coleman (1990) generalized the framework of general equilibrium models in economics, some further discussion of the theoretical logic of such models is required. Walras (1954) was the first to frame the general equilibrium problem. This problem entails not one type of commodity but an arbitrary finite number of types of commodities, each with its potential price at each instant. Both factor markets (for labor and capital) and product markets may be included in the most general models. Market order, or stable equilibrium, denotes a price vector that clears all the markets—that is, a set of “prices” (some of which are wages for labor, for instance) such that all commodities are supplied and sold at the given prices. The theorist is representing, for theoretical analysis, a complete system of markets. This entity and the resulting analysis provide the locus for the general problem of economic order.

General economic equilibrium theory is characterized by an abstract representation of an entire economy so that the parameters of the problem are “noneconomic” in one sense: That is, neoclassical economic theory defines a solution to the problem of resource
allocation as the fundamental problem of “economic order” and relegates structural pre-
requisites to an implied environment. In particular, the institutional aspect of concrete
economic interactions—for instance, the legal sanctioning of private enterprises—is taken
as given. More generally, the normative element in economic action—the right of a private
individual or group to produce for consumption by others through sales in the market—
is treated as exogenous, not endogenous, to the specification of the state of economic
interactions. The very existence of structural units such as the firm and the household is
also a given. Thus, the “economic” element has been abstracted from its more inclusive
nexus.

Given this abstraction, we may define the task of the economic theorist as that of
studying the problem of the conditions necessary or sufficient for the existence of economic
order. In the standard formulation of this problem, preferences are key entities, which
also are placed in a parametric role. Producers’ and consumers’ decisions are the actions
in the system; prices and quantities are state variables. The stable equilibrium solution to
the economic problem is generated through the economic actors’ efforts to realize their
preferences, subject to the given constraints. Formally the theoretical model is studied in
terms of the existence, uniqueness, and stability of solutions to derived equations for
equilibrium. The analytical study of such models is reported in terms of theorems. The
derivation of such theorems, as interpreted in economic terms, constitutes the aim of the
analyst focused on solutions to the general problem of economic order.

Parsons (1937), following Durkheim (1964), noted the givenness of institutions in
economic theory and argued that the task of sociology is to treat such institutions as
problematic. That is, sociologists must define a space for dynamic analysis such that
certain “social” states are endogenous and such that the equilibria of the process correspond
to institutions. But what are the candidates for the parameter space of the dynamical
system with this social state space? One intuitive response is that the parameters of this
institutionalization process should change more slowly than the social state variables.
Parsons’s intuition is that these givens for “the science of institutions” tend to be diffuse
values, such as a work ethic; he refers generically to these entities as “the common value
element.” These and other “cultural” elements are the givens for analytical social theory
as “control parameters” in the language of dynamical systems thinking.

Moreover, in this early work, Parsons already was developing the idea that the type of
control involved is one of guidance rather than force—that is, normative control. With
the somewhat later rigorous conception of cybernetics (Wiener 1948) at his disposal,
Parsons could build on this conception of control as involving culturally defined guidance
or direction-setting parameters operating in a normative control hierarchy (Parsons 1977,
1978). One significant point is that the presence of a control concept at the core of
Coleman’s (1990) model suggests the existence of an important zone of conceptual
interpenetration of the two models; I will elucidate this subject below.

Another important point is that sociological theorists should take their methodological
clue about what they are treating as “the problem of order” from the conception of general
versus partial equilibrium analysis.6 This contrast should not be confused with the distinc-
tion between small group and large group, the latter prototypically “societal” in type.
Obviously, most of human history was lived in small societies. Thus “small group” and
“society” not only are not mutually exclusive; in addition, most of the historically realized
societies have been small groups. The relevant point is that the embedded “small” group
is not socially self-sufficient: it has a social environment that is required for its own order.
Thus “a theory of small groups” may prove irrelevant to addressing general social theo-

6 See Rowe (1989) for another explication of this idea.
GENERAL SOCIAL EQUILIBRIUM

retical problems. The whole point here is that the social environment constrains and enables the partial social system. As in the single market, its emergent order is real but is contingent on analogous order, taken as exogenous and hence as constraining. Then, precisely because this social structural constraint is given, it fails to place the sociological problem of order in a fully endogenous position: any explanation of order that arises from this constraint is only partial, and itself presupposes social order. Thus, for a formal rendition of the intuitive sociological problem of order, we require a mode of analysis which is akin to that of general equilibrium theory in economics.

Two major theories in sociology have been launched from the economic background with an understanding of the logic of general equilibrium and its possible extension to sociology.

The first is that of Parsons, especially as it developed into the AGIL scheme and such associated ideas as symbolic media, control hierarchy, and interchange. One virtue of this scheme is that it proposes a roster of action dimensions or state variables which help us sort out the various types of problems of order. One major deficiency is its lack of deductive fertility. Although this scheme is “formal,” its formalism is much less effective than one ideally would wish in theoretical science.8

The second theoretical framework is that of Coleman (1990). One virtue of this framework is that much of it is mathematical and that the mathematical theory generalizes and extends the corresponding mathematical theory in economics. A deficiency is that it has not been articulated to a conception of a complete set of action dimensions or action state variables, and that its presentation in words has made it seem altogether too static for sociologists’ tastes.

I will discuss these two frameworks and will propose a mode of articulating them which aims to retain the advantages of each without including their deficiencies. The resulting product, I hasten to add, is only a first approximation of the attainment of this objective. I will start with the control concept and then will move into the problem of general equilibrium.

I will use phrases such as the FST model to refer to the key ideas in Foundations of Social Theory (Coleman 1990). The AGIL model will refer to Talcott Parsons’s AGIL model as well as to the associated general ideas.

ON CONTROL AND RESOURCES

As discussed above, FST contains a key idea that also plays a central role in AGIL: the concept of control. From a logical point of view, control is a primitive notion of both the FST and the AGIL models. Such primitive notions have systematic meaning in terms of their location in a system of ideas. It is possible to state the key meaning postulates for control in the FST model. Generally these are intended not as hypotheses of any sort, but as a collection of statements that together serve to regulate the usage of the concept insofar as the framework is employed to analyze the world. Each postulate could become the subject of a small conceptual essay, but for present purposes I wish to be brief and to rely mainly on illustrations to clarify my meaning.

7 As compared with rational choice theories, the AGIL scheme tends to take the form of a “listless conceptual structure that is heavy with assumptions without derivations” (Fararo 1992, p. 448). It is true, however, that Parsons developed a number of analytical tools which proved fruitful for him and those who followed him, especially the idea of chains of specification of normative cultural content.

8 Rigor of formalization is only one criterion for the assessment of theoretical work in science. For a discussion of a set of explicated standards, see Fararo (1984).
FST-1 (purposive control postulate): For any person A and any action of A, actor A controls that action.

As a concrete institutional example to be used throughout this discussion of control in the FST model, consider the United States Senate. Speaking on the floor of the Senate is a quite relevant action. In the sense of FST-1, every senator has control over speaking: he or she has the capacity to speak, which is a body of interconnected cognitive skills that can be activated to control an aspect of behavior. Yet a senator who arbitrarily activated this capacity on the floor of the Senate would be “out of order.” This point takes us to the next meaning postulate.

FST-2 (normative control postulate): For a specified action of an actor A, an actor B may have the right to control that action. This includes the special case A = B, in which A has the right to control that specified action of A.

The control may be exerted with respect to activation or termination of the action, its duration, or other properties. In contrast to the purposive character of action implicated in FST-1, the element of action here is normative. When B’s purposive action toward A amounts to a realization of B’s right to control A’s action in a certain respect, then B’s action not only is purposive but also conforms to a normative pattern, namely the relevant right, presupposing that it exists.

In the Senate, the presiding officer may allocate to Senator A some length of speaking time on the floor of the Senate. The presiding officer has a right to do this, so the allocative action conforms to a normative pattern. But how does the presiding officer acquire this right to control a senator’s speaking action? Clearly, this right is a feature of the rules of the Senate. The next postulate deals with this aspect of control over action.

FST-3 (institutionalized normative control postulate): Suppose that actor B holds the right to control an action of actor A. Then there is a collectivity C with A and B as members such that C controls that right.

In the extreme case, A and B may constitute the collectivity, but this case is very special. More generally, A and B are included with others in a system of action. Social interaction gives rise to formal and informal rights. For instance, senators have both general rights of membership and other rights that depend on incumbency in particular offices.

FST-3 is at the core of the very meaning of social theory as it is connected with such ideas as social order, institution, and collectivity, as well as with the problem of consensus and conflict in the constitution of social systems. For present purposes, the principal idea is that this discussion provides some meaning to the statement “C controls B’s right to control A’s action,” where C is a collectivity of which B and A are members. The control is a function of the institution of a normative pattern that defines as well as regulates specified modes of action in a social system of action.

FST-4: For any right, the actor who holds that right may have the right to transfer it to another actor.

In the special case in which A has the right to control some action of A, this right of transfer may or may not exist. It might have been the case that when Senator A was allocated 15 minutes of speaking time on the Senate floor, no part of that time could be
GENERAL SOCIAL EQUILIBRIUM

transferred. Actually, however, the Senate rules give Senator A the right to transfer a part of the allocated time to another senator. FST-3 implies, and this remark illustrates, that rights to transfer a right are controlled by the collectivity.

FST-5: By a resource in a collectivity C, one means a set of rights together with any related rights of transfer.

By this definition, speaking time (on the Senate floor) is a resource in the United States Senate.

FST-6: By the constitution of a collectivity at a given time, one means the allocation of the resources it controls, among its member units, at that time.

Although usually the term constitution is employed in reference to an aspect of formal governance, in the FST model this is only one type of usage. This terminological generalization agrees with that of Weber (1978, p. 50), although Weber's usage is somewhat narrower.

FST-7: For any system of action, the fundamental issues concern the allocation of rights of control of the actions in the system.

In other words, this metatheoretical idea asserts that we are alerted to how to proceed in theorizing by incessantly asking where the rights of control of action reside. This question, in the FST model, is the same as the question about the allocation of resources in the system. Most important for theory, we are drawn to look for the state description of the system in terms of its constitution and its dynamic transformations over time.

An institution is the form of a constitution that may have multiple realizations in social space and time. For instance, tenure is an institution in the modern American university system. In a particular university, tenure is realized as a constitutional feature of the collectivity.9

Two different analytical contexts exist in regard to the constitution or institution. In one context, the problem is to account for its emergence. In the other, the problem is to derive the path and the outcome of social processes, given that constitution or institution. Later I will employ this distinction in suggesting problems for theoretical analyses that draw on a combined AGIL and FST model. The process in parameter space is the first context; the process in state space is the other context, in which the institutional solution is given.

Readers who are familiar with the AGIL model will take for granted that control is one of the fundamental concepts. As I pointed out earlier, from the earliest explication of action to the later conceptualization of cybernetic control hierarchy, Parsons (1937, 1977, 1978) placed the concept of control in a key analytical position in the framework. With further work it may prove possible to employ some mathematical theory of control to which these ideas can be articulated so as to constitute a single coherent model showing how action and interaction are generated.10

9 For a rigorous discussion of the institution concept, see Fararo and Skvoretz (1984,1986).
10 A preliminary effort in this direction was presented by Fararo (1989b, ch. 2). Relevant conceptual resources within sociology, for hints on how to use control system ideas effectively, include Heise (1979), Powers (1973), and Stinchcombe (1968). Coleman (1990, pp. 460,504,512) also mentions that an optimal system model would be a way to treat the control relation more formally. Here Parsons was light-years ahead of the rest of the discipline in understanding the importance of cybernetics for sociological theory; yet we are still at a very primitive level of translating complex ideas about normative control into an effective formalism.
When we interpret these models in the spirit of unification, it is difficult to find any inconsistency between the meaning postulates for control drawn from the FST model and those implied in the AGIL model.

It has been argued that control is the key concept of social theory (Gibbs 1989). This is not far from the truth, although the argument needs qualification (Fararo 1990b). General social theory involves more than conceptual schemes; it is concerned particularly with general theoretical problems. The remainder of this paper focuses on the problem of general social equilibrium as a major problem of this sort.11

GENERAL EQUILIBRIUM GENERALIZED

When Pareto set forth his program for general theory, he did so with full understanding of the general theory of economic equilibrium and its underlying rational actor model. In fact, he was one of the principal contributors to the development of these ideas. Pareto conceived of what he called “political economy” as a pure theory. Nonrational motivational elements figure in his methodology as frictional forces that may prevent the economy from attaining an optimal state. Sociology is defined as the more general body of knowledge that encompasses but goes far beyond economics. To correspond to the rationality idealization used to theorize about the interactions of producers and consumers, Pareto thought another type of actor model was needed, one which made nonrational elements central. His implementation of this idea involved an elaborate classificatory scheme which not even the appreciative Parsons used or elaborated.

This somewhat unproductive path taken by Pareto alerts us to a major difficulty underlying the focus on nonrationality: If action is represented as rational, then nonrational elements can be treated on the model of frictional forces—that is, diverse nonrational motivational elements can be introduced as needed. Rational action is the “ideal of natural order” for social theory, as Toulmin (1961) characterizes general representation principles in theoretical sciences. But if nonrationality is made into the ideal of natural order, then what is its form? Is rationality to be introduced as a frictional element? If so, how? The very residual aspect of the “nonrational” implies that some analytical concepts are needed to convert it into a positive theoretical basis.

This was the task Parsons undertook; it is evident in his study of Marshall, Pareto, Durkheim, and Weber. He enunciated no simple principle of action, although the burden of the classical reconstruction is that normative orientation, especially to common values, is an essential feature of human action. Only later, with the cybernetic model, did Parsons acquire what we now can interpret as a representation principle (Fararo 1989b): Human action is cybernetic. It involves incessant negative feedback control in which entities such as values, norms, goal concepts, and means concepts are compared with perceptual feedback in the ongoing action process that attempts to make the perceptions of the situation of action agree with “ideal” states or reference levels, especially institutionalized normative control relations specified through statements FST-2 and FST-3 in the previous section.

Coleman (1990) can be interpreted as starting precisely at the same point as did Pareto and Parsons: from the neoclassical economic theory. Like them, he admired its properties as theory, but aimed to go beyond it to develop a general theory of society. Coleman, unlike Pareto and Parsons, makes explicit use of the abstract form of general equilibrium

11 In a stronger state of the enterprise under initial development in this paper, a formalized control concept would constrain very directly the development of the theory answering to this general problem. Instead, in the previous section, I presented a more formal statement of the meaning postulates for the concept. In what follows there is an occasional reference to one or more of these statements.
theory. Adopting the view that the aim of social theory is to explain the behavior of social systems by employing a simple actor model, he frames the general equilibrium theory as a way of realizing the methodological template for the micro-macro link shown in Figure 1.\footnote{One can think about the micro-macro link in numerous ways. In employing the formulation associated with the FST model, I do not suggest that these other formulations lack cognitive value, but I think many of them can be embedded in the clear logic of the FST version. See Alexander et al. (1987) for a sampling of other micro-macro formulations.}

In this template, the macro level is defined as the state of a social action system and its parameters. Given the macro initial conditions, an actor's situation enables and/or constrains certain possible actions. On the basis of the principle that the actor acts purposively and in such a way that we can idealize it as optimizing, an action is generated. Thus, rational choice is the micro-to-macro transition. The transition back to the macro level calls for some mechanism that combines actors' actions into an outcome. This can be some form of institutionalized aggregation such as voting, or it can be some other process formulated in a model by the observer.

The general equilibrium model is one of many possible abstract theoretical implementations of this methodological template. It yields a theory template according to the following reconstructed logic:

1. Write down the entities and relations for the economic theory. Because economists have done this with precision, this step is straightforward. There are economic actors, namely the firms and the households. As an initial condition, they own certain goods and services and are interested in acquiring other such goods and services. This exchange nexus is mediated by the price system; under derived conditions, it leads to an exchange that balances the demand for any good or service with its supply—that is, leads to an equilibrium.

2. Relabel the abstract entities of the template with suitably more generalized terms, where necessary, such that the economic interpretation is a special case. (See Figure 2.) Thus the households and firms become simply the actors. The goods and services are simply the resources. The ownership relation becomes the control relation. Price becomes value. Wealth becomes power.

3. In regard to the rational actor model, specify a form of representation of utility maximization that can be coordinated to the world in such a way that the numerical relations faithfully represent empirical preferences and the numerical parameters can be interpreted in a suitably generalized way.

4. Extend the template of the abstract theory so as to include elements omitted in the pure economic theory which was its starting point. In particular, extend the template to include interpersonal sentiment relations.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Coleman's Methodological Template}
\end{figure}
Figure 2. Coleman’s Theoretical Template

The logic of Points 1 through 4 can be recapitulated and amplified as follows. Once we have achieved the abstract theory template of Figure 2, we can instantiate it again in the economy as a special case. The general point is that actors are motivated to enter transactions because of their interest in resources controlled by others: they exchange control over some portion of what they control initially. Thus an initial situation is described in terms of the two classes of variables—control and interests; this situation is transformed into a final situation in which resources are reshuffled among the actors.

Value and power, unlike the primitive concepts of control and interest, are derived concepts. Although specific respectively to each resource and to each actor, they are properties of these units that would not arise apart from the social nexus of exchange. Because of the configuration of motivation (interests) and control, the actors have the power they have, and the resources have the value they have.

The formal apparatus for accomplishing the derivation of these two socially generated types of properties depends critically on the specification of the rational actor model (Point 3). The FST model uses a different strategy here from that used in Points 1 and 2. It involves the addition of an assumption to the motivational template of economic theory; according to this assumption, each consumer has a well-behaved utility function that ordinally represents the actor’s preferences. Thus a definite form of utility function is added. The parameters of this function are the interest parameters and are all that is meant in the FST model by “interest” in the template of the abstract theory. This point is important because it means that a variety of distinct interpretations of the concept of resources allows a potentially very wide range of “interests” beyond any historically given connotation of that term. The same is true of “resources.” The theory template in Figure 2 applies to two other situations in which “resource” refers to entities not ordinarily subsumed under that term: actions and events. More fundamentally, the model defines a resource in terms of rights of control over actions, as shown in the previous section. To own property is to have certain rights of use, disposal, and the like. In general, to control some resources is to have certain rights of action in regard to those resources.

Point 4 of the model can be explicated by redrawing the diagram for the theory template so as to include the logical extension to cover the element of interpersonal sentiment. To avoid cluttering the diagram, we introduce some notation in Figure 3:

\[C = \text{the control relation}, \]
\[X = \text{the interest relation}, \]

and now the new element,

13 Coleman (1990, p. 721) calls this “psychic investment.”
Each actor has some sentiment toward every other, whereby social objects are recipients of sentiments and social actors are holders of sentiments. All of these entities figure in derived equations (Coleman 1990, p. 722). For social objects a corresponding derived concept is the importance (of social objects) in the system.

When S is taken in the form “Each actor has concern or sentiment only for self,” the corresponding symbol becomes an identity operator, denoted as I. In that case, the theory template abstracted from economic theory (figure 2) is recovered as a special case. Other extensions exist (Coleman 1990, part 5), but it would be too lengthy a process to try to explicate them or the most general form of the template.

The interpersonal sentiments, however, function here in a manner somewhat analogous to that of the nonrational sentiments which Pareto and Parsons wanted to include in a generalized theory. Interpersonal sentiments can be seen as interest qualifiers in determining the value of resources.14

ACTION SPACES

An essential aspect of the AGIL model is the conception of “dimensions of action space.” The following discussion constitutes a move toward a dynamical system logic while retaining the conceptual connection with Parsons’s ideas. It is not in the scope of this paper to justify the AGIL model, and I do not want to imply that no problems are connected with the model. Even so, problems of all sorts are the stuff on which we work rather than barriers to advancement; hence one can use a framework while admitting its less-than-perfect state. Here I offer a compact prelude to the linkage of these notions, in the next section, to the FST model.15

The formal dimensions or classes of variables are as follows for the analysis of any living system:

14 Imagine reflexive loops on each of the three entities—actors, resources, and social objects—obtained by multiplying the matrices along the path from and back to each such node. Then note that the loop label XSC could be written (XSC): given resources that are the objects of differential interests-as-qualified-by-interpersonal-concern (XS) and given differential control (C), these yield a distribution of value over those resources for actors with differential control (C) and interests-as-qualified-by-interpersonal-concern (XS). Similarly, CXS calculations yield a distribution of power of actors. The interpretation of SCX for importance is somewhat different but still involves the qualification of interests by sentiments. Thus in the extended theory it is not self-regard that generates power and value distributions. It is qualified interest, as I call it—interest adjusted by the “force” of concern or by psychic investment in others. This concept would appear to be enormously important in terms of the heritage of efforts to extend the general equilibrium approach to sociology, but it is found only in muted form in Coleman’s book. There it is buried in a mathematical chapter rather than made a central feature of the generalized theory.

15 For some of the details, see Fararo (1989b, ch. 3) and the references cited there.
L: state of latent pattern maintenance;
I: state of integration of the units of the system;
G: state of system goal attainment;
A: state of adaptation of system to environment.

These states might be used to describe a social nexus of behavioral organisms, including the “conversations of gestures” therein (Mead 1934). Yet once we have a class of organisms whose conversations involve significant symbols (Mead 1934), we must make the transition to action analysis in Weber’s sense of behavior with subjective meaning. Thus the nexus of behavioral organisms becomes a nexus of actions, and the analysis involves an action system specification of the general dimensions:

L: cultural state variables;
I: social state variables;
G: motivational state variables;
A: behavioral state variables.

In terms of control, my intuitive conception is that relatively slow-changing cultural state variables function as control parameters for a faster process in social state space. For instance, some cultural value is institutionalized in some social attractors in given cultural conditions. Similarly, relatively slow-changing social state variables function as control parameters for a faster process in motivational state space. For instance, some social position in a social institutional structure induces certain motivational orientations—interests—in the socialization of an actor occupying that position. Then relatively slow-changing motivational orientations (e.g., such socially specified interests) function as control parameters for a faster process in behavioral state space (involving the attempt to realize those interests). Finally, relatively slow-changing behavioral states function as control parameters for a faster process in the state space for the description of an organism’s movements in a physical environment. The ultimate parameters of the action state space are the slower-changing biophysical conditions (e.g., the organisms’ genetic programs). A normative control hierarchy model is involved here. The control parameters are “guidance” terms, providing directions for orientations with properties that become more specific as they pass from the cultural to the behavioral level of control.16

These four classes of state variables specified abstractly by the AGIL model are applied again to the social state. That is, the AGIL model includes a recursion element and embedding, akin to the specification of a grammar. The four social system state variables are of the form IL, II, IG, and IA. These forms provide a means of defining the nature of the various social variables.

The term IL must refer to maintenance of the latent pattern with respect to the culture that is institutionalized. The relevant culture includes values that control the social process, a very important point. Then, in this aspect, IL refers to the state of maintenance of commitments to such values. With suitable generalization of the intuitive idea, we may refer to this as the educational function. If we envision generations of actors and new entrants into the system, we can say that some members of the system may be entrusted with passing on the relevant value commitments. One can say that their role involves

16 Powers (1973) provides the most detailed cybernetic hierarchy model known to this author. Whereas Heise (1979) draws on the feedback logic that Powers explicated so well, McPhail (1991, ch. 6) makes sociological use of the hierarchy aspect of the complete model. See also Fararo (1981).
performance of a fiduciary function for the social system. In an analogous way, we are led to the following interpretations:

- IL: fiduciary state variables;
- II: communal state variables;
- IG: political state variables;
- IA: economic state variables.

The term communal refers to “social” relations in the sense of enduring bonds—Weber’s conception of communal relationships as grounded in a subjective sense of “belonging together.” Therefore this is the dimension of solidarity. The term social in one sense characterizes the whole roster when we contrast it with L, G, and A (cultural, motivational, and behavioral) state variables. In another sense, however, relevant here, it contrasts with IL, IG, and IA (educational, political, and economic state variables). The term communal then translates this contrast into a verbal symbol; “community” is to II as “economy” is to IA and as “polity” is to IG. Our culture seems to have no name for IL. “Educational system” would be too narrow because functionally families and other such units contribute to the state of institutionalized-culture pattern maintenance. Parsons calls it the “fiduciary” system. The focus of attention here is the transmission of the dominant value systems, those which are institutionalized in the action system. Social or collective goals are at issue in the IG focus, so the processes involve the organizational and conflict aspects of social process that generate differential definitions of the goal of the system.

Given these classes of state variables, which constitute the total state of a system of action in a biophysical environment, we must turn next to the problem of synthesizing a framework that incorporates the advantages of the FST model along with the AGIL model’s conception of the classes of state variables which characterize action systems.

GENERAL EQUILIBRIUM: TOWARD SYNTHESIS

The very abstract character of what I call the FST model’s “theory template” encourages the idea of interpreting this model in terms of various dimension of action. I will take a few preliminary steps in this direction. Figure 2 contains two sets of entities, actors and resources, and two types of relations connecting them, control and interests. The extension of the theory template, shown in Figure 3, also includes actors as social objects for each other, connected by relations of interpersonal sentiment. The theory also implies a derived distribution for each type of entity: a distribution of the power of actors in the system, a distribution of the value of resources in the system, and a distribution of the importance of social objects in the system. I add “in the system” to reinforce the point that these properties are relationally induced in the system of interaction rather than defined outside the system.

At two levels, we can try to create an interpretation of the FST model in terms of AGIL categories. One is the general action level: the classes of state variables are cultural (L), social (I), motivational (G), and behavioral (A). The other is the general social institutional level: the classes of state variables are fiduciary (IL), communal (II), political (IG), and economic (IA). Let us start with the general action level.

In discussing the control relation in the FST model, I noted that a fundamental special case is the control of actions, whereby the latter have become the content of the resource placeholder in the theory template. Subjective claims of control are endemic in interaction, but to take the control relation as given for certain types of theoretical analyses, one assumes that a concept of right to control is institutionalized (as in FST-3). The point is
that any right to control an action is derived from the collectivity; that is, it is an emergent feature of social interaction. Such a right to control an action, however, is normative (FST-2). In the case where it is more than a subjective claim, it is objective in the sense in which objectivation and institutionalization coincide (Berger and Luckmann 1966). It is a social fact. Thus the FST model’s “rights to control”—when they are an aspect of an attractor state of the system of action—correspond to the institution focus at the I level of the AGIL model. Such rights are integrative in function, if they exist, because otherwise there would be only a discordant and uncoordinated collection of subjective claims. For instance, property—as the right to control actions such as use or disposal—would not exist. Thus economic institutions are bundles of such rights to control actions.

Our first correspondence, then, is that Coleman’s thematic focus on rights corresponds directly to the focus on institutions as the key emergent entities in the intrinsically social dimension of action systems. Parsons (1951) specifies the social state as a matter of an actor’s relational expectations toward situational social objects. He implies that in an attractor state, such expectations are merged with normative standards so as to be mutual and self-enforcing. Thus the intuitive idea that institutions, in an important aspect, are normative rules coheres with the combined formulation suggested here.

The other primitive relation in the FST model’s theory template is interests. Earlier I emphasized that this concept is generalized; it is attached to certain exponents in a form of utility function that enables deductive fertility in the FST model. Preconceptions about the meaning of interests should be put aside to enable flexible use of the template. Intuitive ideas associated with this term, however, suggest how it can be made to correspond with the state variables of the AGIL model. In fact, interests correspond directly with the G level, that of motivation: Coleman regards the maximization of utility as a motivational assumption (Coleman and Fararo 1992).

This correspondence requires some discussion. Parsons (1951) posits a tendency to optimize gratification as a universal motivational principle at the level of general action. At this level, he tends to refer to a balance between gratification and deprivation as a key motivational feature of the actor. From the first appearance of this idea in influential papers such as that by Homans (1958), exchange theoretic formulations have referred to rewards and costs as generalized features of interaction. The usual exchange-theoretic formulation is that behavior depends on a balance between reward and cost. In the language of rational choice theory, the same idea is expressed as a benefit-cost balance. In all these cases, the idea is that the actor’s action tends to change toward increasing the favorableness of the gratification-deprivation, reward-cost, or benefit-cost balance. All of these ideas, one may suggest, can be expressed in a formal way in terms of positive and negative utility. Accordingly the actor changes behavior in the direction of increasing utility: for instance, by acting to increase the reward aspect, to decrease the cost aspect, or with both ends in view. Indeed, in most of these formulations, including that of Parsons, the actor’s acting in this way need not be strictly a matter of discursive consciousness (Giddens 1984).

Thus I suggest that this sort of movement toward more favorable balance, or “optimization,” can be related to the utility maximization postulate of the FST model. In this conceptual move it is essential not to follow the Parsonian usage of restricting the word “utility” to the neoclassical focus on economic action. To this extent, then, a certain degree of “economic imperialism” seems reasonable: we try to extend the scope of formal reasoning with utility functions.

17 For a defense of the idea that modern exchange formulations are linked closely to rational choice ideas, see Willer (1992).
As a further elucidation of this idea, let us distinguish immediately between the level of general motivation principle and the level of what Parsons (1951) calls "institutional motivation." A central point of his "fundamental dynamic theorem of sociology" is that optimization of gratification is tied to social roles through the internalization of values, thus making habitual and unreflective conformity the normal mode of action in roles (including the membership role with its set of associated norms). Therefore a substantial part of behavior in roles is motivated in a nonrational way rather than involving explicitly conscious rational choices. This theorem, however, if it can be derived formally (and we should aim toward this accomplishment), is indeed a theorem rather than a postulate only if we begin by not assuming institutional motivation as the logical premise of fundamental theory. Instead, like Parsons and Homans, we should begin with the tendency to balance gratification with deprivation, and should map this idea into a model that formalizes it. One such formalization is present in the FST model: maximization of a generalized utility function.

Thus, on the one hand, universal human interests, such as an interest in social approval, may enter into the action nexus. On the other hand, interests dependent on institutions are variable, especially as these vary by position. Analytically, if the G subspace is taken as exogenous, the interests of the FST model function as parameters. To say they are "given" for the theory of social order, however, has these two very different meanings:

Given in general for social dynamics and the creation of institutions (universal interests), and
Given in particular for the processes occurring within the structural constraints of institutions.

In the latter case, interests are adjusted to occupancy of social structural position. For instance, Marxian "interests" as connected to class location are obviously of the second type, whereas Marx's general assumptions about human nature belong to the first type.

In returning to the problem of the correspondence between the concepts of the FST model and the state variables of the AGIL model, it is probably best to regard the A or behavioral level as the absent level of the FST model. It corresponds to the "execution" of a motivational orientation of action attained through the G level of process, and it presupposes some control over the resources required for such performance. This is the last stage of the ongoing iterated control process that leads to some particular guided movements of human bodies (or not, in the case of refraining from acting in a certain way) in the biophysical environment.

Now we turn to the L level. Value orientations are only one of the elements at the level of the class of cultural state variables, but in the AGIL model they are the most significant for treating the theoretical problem of social order. Weber, who was familiar with neoclassical theory, distinguished between commitment to values and instrumental rationality. Both he and Sombart had stressed the ethical element in capitalism as an added feature not ordinarily analyzed in neoclassical theory and not readily subsumed under the category "utility of commodity bundle." The ethic that interested Weber and Sombart was cultural not only in the sense of being learned and transmitted but also in being common to a broad sector of a societal population. The spirit of capitalism included the ethic of hard work and the spirit of competition, whereby spirit is another informal term for entities at this cultural level of control. Such cultural entities are produced by a system of interaction—this is an "upward" flow in the cybernetic hierarchy—and are properties of the system as such. In terms of the methodological template of the FST model (as in Figure 1), they are strong examples of emergent macro features. Indeed, in the abstract theory
template, a derived “value of resource x” is precisely such an emergent feature of interaction.

General social theory should demonstrate that under certain conditions, merely localized values do not mediate exchanges among actors. Instead there emerges a value system that coordinates all exchanges, on the model of the price system in general equilibrium theory. In cases of conflicting viewpoints in the social system, a dominant value system and a set of subordinate value systems will emerge.

Can the FST model be given an interpretation that allows us to derive value systems that correspond to such things as the idea of freedom, the value of hard work, the spirit of competition? In addressing this question it is important to recall that the term resources is a placeholder in a template, to be interpreted flexibly as needed to solve theoretical problems and to attain broad empirical applicability.

With this idea in mind, what might be the entities over which actors have control and in respect to which they have interests, such that in equilibrium the value system in the formal sense of the vector of values in the FST model corresponds to the emergent value orientations in the sense understood by Weber, Sombart, Parsons, and others, including contemporary neofunctionalists?

The answer might be found in examining how the FST model applies to the emergence of norms, on the basis of possibly conflicting conceptions of desirable actions to be required of actors in specified situations. That is, the problem involves the derivation of the equilibrium of a situation wherein the initial condition is one of disparate views about rights. The situation described in FST-3 is taken as a problematic outcome of process, not as an initial condition.

As a concrete example, consider the situation in the former Soviet Union. It is said that a major obstacle to the development of a market economy is the absence of an appropriate economic culture. Profit is popularly regarded as exploitative; thus “one ought not to make a profit” is a value orientation in this system. The anticipated inequality of wealth is regarded as improper; thus “the distribution of wealth ought to exhibit very little inequality” is another value orientation. Competition among firms is seen as anticommmunal, pitting people against each other rather than working cooperatively. Thus “economic units should not compete” is yet another value orientation.

These three and other value orientations have three properties:

1) they are normative,
2) they refer to some aspect of potential or actual social structure, and
3) they are more or less common, currently passing (perhaps) from the status of dominant value system to another status.

Thus the value orientations are social in two senses; they refer to the social state and they are widespread or common. When the three properties are taken together and are interpreted in terms of the general equilibrium context, such value orientations are ideas about the desirable equilibrium state of action, which is also an emergent property of that system. In this sense, it is a cultural property of the system.

Does the FST model allow us to represent this explicated value orientation aspect of an action system? I conjecture that in the treatment of “emergence of norms” by Coleman (1990, ch. 30), we may find the appropriate interpretation of the template. In one type of such analysis, Coleman treats the problem of re-allocation of rights, precisely the problem in the former Soviet Union. There are two possible “regimes,” one in which (in this interpretation) rights are held “individually” (i.e., private enterprise) and one in which rights are held “collectively” (i.e., state enterprise). An initial matrix of control exists, in which bureaucrats control numerous enterprises, and entrepreneurs control few. A matrix
of interests exists, in which bureaucrats are not interested in exchanging their control over state enterprises, while the other actors have little to offer the bureaucrats as an inducement for such an exchange. In the presence of strong interests in and control over enterprises, the bureaucrats have more power than the reformers. The economic institution is difficult to change.

Thus, in Coleman’s sense, the derived dominant value of a certain right is an attribute of the system of action. It is a derived quantity associated with the right as such; it exists because of the particular order characterizing the interactive nexus with differential interests in the rights and differential control over the rights. Because such a dominant value is always one of a number of such values in the typical case, we should speak of a dominant value system (formally, a list of value terms, one per normative action under consideration). This is the value orientation implied in the institutional state of the system. When we put it the other way around, as Parsons does, the social structure (in this aspect) consists of institutionalized normative culture. We must add immediately, however, that the existence of variant value systems accompanies the dominant system.

The commonness of any such value system, whether dominant or variant, follows directly from the calculation: it is a derived property of the system of action as such, not of any particular subset of actors. It is an emergent macro property of a system of social action.

The template shows an important feature of cultural value orientations insofar as they are institutionalized: they reflect the de facto power situation. This point is central to the concept of institutionalization which Stinchcombe (1968) put forward and which informs the ideas elaborated here. As is central in Weber’s treatment of values, variable sets of actors may have different “ideal interests” in norms (Kalberg 1985). These interests are reflected in the set of value systems, one of which is dominant. The opposition has its own value system; under certain conditions it will defer to the dominant system, recognizing the power situation. In this way, this correspondence between the FST and the AGIL models includes more of the “conflict” orientation in the dominant values characterizing a society than does (say) Parsons’s more idealistic approach. This emphasis is in keeping with neofunctionalists’ aspirations to appropriately transcend Parsons’s idealistic tendencies. This is not to deny, however, that culture entails much more than dominant and subordinate value systems.18

Because some common value systems are not institutionalized, they can serve the purposes of what Blau (1964) calls “opposition ideologies” that are associated with revolution and other forms of social change. In practice, the cultural ideals of a society are only partially institutionalized. For instance, the gain in rights by blacks and women in America since World War II shows how institutionalization of an ideal can exist at various levels and can expand or contract over time. The interests behind the dominant system may wane, or the power of actors associated with one or another variant set of norms may increase. In this way, dominant value systems can change.

This problem is so important that the points made here deserve recapitulation and amplification. We begin with the initial condition that the actors are divided as to the desirability of the norm. Thus they differ in value orientation. The norm is the object of value commitment or lack of such commitment. For simplicity we assume two sets of actors. For one set, the norm is favored; we represent this condition as an interest in the norm, which varies within the set. The other set consists of actors whose interests are

18 No matter how strongly committed one is to general theory, in practice there is no real alternative to the Mertonian “consolidation” directive: Let various abstractly formulated theoretical models be worked out, and then let us try to synthesize them later. This is an essential feature of “the spirit of unification” in sociological theory (Fararo 1989a).
opposed to the norm, with varying opposition in the set. Calculating the value of the normative "regime" (as Coleman puts it) from these two perspectives yields not one but two values. One outweighs the other because it is associated with more powerful actors with stronger interests in the adoption of the norm. In short, we have both a plurality of "common value systems" and a dominant value system. We regard the dominant value system as that which is institutionalized. The rationality of the opposition lies in its recognition that it does not possess the combination of interests and power needed to prevail, so that the potential for violent conflict is averted—under certain conditions. At present the central idea is not these conditions but that a system of action contains a plurality of value systems along with a dominant, institutionalized value system.

Table 1 summarizes the key correspondences set out in this discussion of initial conceptual steps toward a synthesis of the FST model and the AGIL model at the level of general action systems analysis.

INSIDE THE SOCIAL SYSTEM

Let us turn now to the second level of correspondence between the AGIL scheme and the FST model. Here we focus on the subclasses of the I class of state variables: IL (fiduciary), II (political), IG (economic), and IA (economic). For the sake of coordination with the FST model, it is sometimes convenient to read IX, for any X, as "institutionalized rights to X action." For instance, the institutionalized rights to economic action are organized into clusters such as property and contract, with specific forms such as intellectual property and the employment contract. We can conceive of an economic exchange as regulated by given institutionalized rights to economic action. For instance, a contract between a novelist and a publisher deals with the creation, use, and disposal of a specific item of intellectual property. In general equilibrium theory in economics, the contract institution is presupposed, and the "signing of the contract" in the specific sense amounts to a transfer of rights to control the property in question.

In this context it is useful to think of IX as a parameter space for a corresponding state space. Thus IA is the parameter space for economic processes, IG is the parameter space for political processes, and IL is the parameter space for fiduciary processes. The idea of treating each social dimension in terms of two such spaces is based on Parsons (1961).

We can create a correspondence between these spaces and the FST model by distinguishing two interpretations of the FST model's theory template. At one level, the institutional framework of the economy or some other system is regarded as problematic:

<table>
<thead>
<tr>
<th>AGIL Model</th>
<th>FST Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Common value system</td>
<td>Values (v)</td>
</tr>
<tr>
<td>I Differentiated norms</td>
<td>Rights to control (C)</td>
</tr>
<tr>
<td>G Need dispositions</td>
<td>Interests (X)</td>
</tr>
<tr>
<td>A Plans*</td>
<td>(Behavior)</td>
</tr>
</tbody>
</table>

Note: Purposive control links G with A, whereas normative control links I with G: downward is the direction of guidance or direction setting, whereas upward is the direction of limits imposed by lower-level constraints.

*The term is taken from Miller, Galanter, and Pribram (1960). Although never used formally by Parsons, it is very consistent with the intended interpretation of behavioral operations as linked in a feedback loop to goal states.
certain rights, as objective or institutional facts, constitute the equilibrium and are not merely given conditions of attaining that equilibrium. In this case, a complex social structure is treated as problematic. Formally, a process is present in the parameter space IX. At the other level, the structural or institutional framework is treated as given. At this level we are treating a process of role-defined interactions and regarding its equilibrium as problematic. Formally, parameter space IX contains a fixed condition that controls the form taken by the process in state space, including the equilibrium outcomes.\footnote{In one aspect of neofunctionalism, institutions are treated as problematic (see, for instance, Colomy 1992).}

With two interpretations for each of the four dimensions of social action space, we obtain the following sketch of the nature of some of the key theoretical problems.

IL Institutions as Problematic

Tasks for the theorist are the creation and study of theoretical models for analyzing the emergence, stability, comparison, and change of value orientations, norms, collectivities, and roles that are differentiated aspects of the maintenance and transmission of the dominant value orientations embodied in the society. In specialized form, these are emergent differentiated educational institutions. We also can take the continuity of variant but nondominant value systems as a problem for analysis.

IL Institutions as Given

The task for the theorist is the study of the general equilibrium problem of social reproduction processes specified through a set of IL or cultural resources and a corresponding set of actors (the collectivities and roles given for the analysis) who have differential control and interests in such resources. Coleman's (1990, p. 136) example of a classroom exchange system would fit here. The important given is the high school as an educational institution, with its grading and other procedures and requirements in place. Coleman's market analysis is really an instance of partial rather than general equilibrium analysis. It focuses on a particular classroom collectivity with specified actors in teacher and student roles. The school system and the teacher in particular represent the dominant value system. The analysis derives the value of homework and of grades in this partial action system: in other words, it derives two specific educational value orientations (using the correspondence of the FST model's "value of resource" to the AGIL model's "value orientation").

II Institutions as Problematic

Tasks for the theorist are the creation and study of theoretical models for analyzing the emergence, stability, comparison, and change of value orientations, norms, collectivities, and roles that are differentiated structural aspects of the social integration of societal units. The outcomes are diffuse communal groups in the sense of collections of persons linked by shared membership sentiments and by a collective identity. The whole society is one such group, which the modern concept of "nation" connotes. In this context, one might add social networks involving chains of strong and weak ties.

II Institutions as Given

The tasks for theorist is the study of the general equilibrium problem of communal (social integrative) processes specified through a set of status resources and a corresponding set
of actors who have differential control and interests in such resources. I chose the term status because it suggests prestige and influence; Parsons associates the latter with the existence of a generalized medium of communal interaction. The context is one of voluntary association and particularism; influences are transmitted along these ties. Probably Coleman's (1990, ch. 12) concept of social capital fits here because of the relevance of social networks of ties in which actors are embedded. The important concept of closure of such networks is developed in detail in the framework of the theory of biased (i.e., nonrandom or ordered) networks (Fararo 1989, ch. 4).

IG Institutions as Problematic

Tasks for the theorist are the creation and study of theoretical models for analyzing the emergence, stability, comparison, and change of value orientations, norms, collectivities, and roles that are differentiated structural aspects of collective decision making at all levels. The institution of authority is central to this topic, and the state looms large in modern societies. "Nation-state" is the combination of political sovereignty and collective identity (IG and II), a combination that need not always exist empirically.

IG Institutions as Given

The task for the theorist is the study of the general equilibrium problem for political processes, specified through a set of political resources and a corresponding set of actors with differential control and interest in such resources. Here authority is given as differential control over political resources such as the right to declare war or the right to vote on a proposed new law. According to Parsons, the medium is power in his special sense, which makes it practically equivalent to authority in meaning.

IA Institutions as Problematic

Tasks for the theorist are the creation and study of theoretical models for analyzing the emergence, stability, comparison, and change of value orientations, norms, collectivities, and roles that are differentiated in terms of specialization in economic action. Here institutions such as property and contract are taken as problematic outcomes of process.

IA Institutions as Given

The task for the theorist is the study of the general equilibrium of a system of economic markets, specifically the focus on neoclassical economic theory and the conceptual starting point. With abstraction, this starting point yields Coleman's template; with extension, it yields his generalized template. The Parsonian symbolic medium is money.

FINAL REMARKS ON SOCIOLOGY AND ECONOMICS

In relation to economics, two routes may be taken. One involves what has been called embeddedness (Granovetter 1985; Polanyi, Arensberg, and Pearson 1957). Any empirical economy is only a part of a society, implying that institutional conditions as well as
interpersonal networks mediate concrete economic transactions. This is the sociology of the economy, or (as it is now becoming popular to say) "economic sociology."

The other route involves abstraction and generalization along the lines taken in the FST model. A general mathematical theory is abstracted from the general equilibrium theory in economics and is given a more general interpretation. The economic interpretation becomes a special case. The abstract theory is also extended, in a logical sense, to encompass wider but still abstractly understood phenomena; for example, the interpersonal sentiment matrix S discussed earlier is introduced into the scheme.

The last part of this paper can be understood as exhibiting a combination of these two routes. The economy is not only an isolated instantiation of the abstracted general equilibrium theory. The economy and its social systemic environments constitute one combined instantiation of a formal system. The economy is embedded in society, but so also are the polity, the community, and the fiduciary system. The whole society is embedded in the total system of action with its additional analytical dimensions. This was the approach of Parsons and Smelser (1956) in employing the AGIL model. In this paper I articulated the FST model to that model, in the interests of eventually exploiting its deductive potential while also articulating it to a multidimensional view of action systems. Studied abstractly, the resulting complex abstract models may pave the way for general order theorems of the type that general theorists should strive to demonstrate.

In this essay I have not advanced such theorems. My aim has been to help create the conditions required for such formal theoretical efforts. Specifically, we must hold some sort of intellectual conviction that the synthesizing approach is not doomed to fail. The conviction is that rational choice theory and neofunctionalism, despite the arguments of leading advocates on each side, can be synthesized selectively to create a general social theory which incorporates important elements of both traditions. By drawing on two major formulations of the two types of theories, the FST model and the AGIL model, I have tried to show that this project has some plausibility and is worth further theoretical effort.

REFERENCES

Indeed, this is close to the spirit of Alexander (1987).

